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We investigate the dynamics of turbulent flow in a two-dimensional trapped Bose-Einstein condensate by
solving the Gross-Pitaevskii equation numerically. The development of the quantum turbulence is activated by
the disruption of an initially embedded vortex quadrupole. By calculating the incompressible kinetic-energy
spectrum of the superflow, we conclude that this quantum turbulent state is characterized by the Kolmogorov-
Saffman scaling law in the wave-number space. Our study predicts the coexistence of two subinertial ranges
responsible for the energy cascade and enstrophy cascade in this prototype of two-dimensional quantum
turbulence.
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I. INTRODUCTION

The turbulent flow in superfluid is an important and long-
standing subject in low-temperature physics �1�. It was al-
ready known in the early 1950s that the flow of superfluid
component of liquid helium can become turbulent in the
presence of a counterflow of the two fluids driven by a
steady-injected heat current �1�. Feynman speculated that
this superfluid turbulence can be described as a chaotic
tangle of quantized vortex filaments �2�. Later, Vinen experi-
mentally confirmed this picture by showing that superfluid
turbulence is maintained by the mutual friction between vor-
tices and the normal flow �3�. Subsequently, superfluid tur-
bulence in the thermal counterflow was intensively investi-
gated and many aspects of this type of turbulence are now
well understood. Nevertheless, due to the complexity of the
two-fluid structure, the counterflow turbulence has no classi-
cal analog and thus attracted little attention of the investiga-
tors working on classical hydrodynamics. More recently, su-
perfluid turbulence of noncounterflow types have been
achieved experimentally in liquid helium, in analogy with
some rather simple cases of classical turbulence �CT�. For
example, Maurer and Tabeling demonstrated the generation
of turbulence by two counter-rotating disks �4� and Stalp et
al. observed the decay of grid turbulence �5�.

Superfluid turbulence is sometimes termed as quantum
turbulence �QT� to highlight the key role played by quan-
tized vortices in the dynamics which differs from that of the
chaotic but continuous vorticity of CT. Despite the funda-
mental difference between QT and CT, experimental evi-
dences �4,5� and numerical simulations �6–8� have revealed
that, even at very low temperatures, QT is characterized by
an energy spectrum following the Kolmogorov’s −5 /3 power
law, a sign that also hallmarks the occurrence of CT �9�.
These findings have aroused considerable interest in explor-
ing the possible connection between CT and QT occurring at
zero temperature. In particular, due to the close relationship
between liquid helium and atomic Bose-Einstein condensate
�BEC� in superfluid behavior and quantized vorticity �10�,
QT in the trapped BEC has been well studied by several
groups in the last few years. In these investigations, QT is

predicted to occur in the following cases: in the evolving
stage prior to the nucleation of vortex lattice in a rotating
condensate �11,12�, in the collision of two condensates �13�,
in the combined rotations around different axes of a conden-
sate �14�, in the disruption of a single vortex ring through
bending wave instability �15�, and in a phase-imprinted two-
dimensional �2D� BEC �16�.

From the perspective of classical statistical physics, the
fully developed turbulence can be explained by means of the
transport of inviscid invariants between different scales. With
this reasoning, Kolmogorov assumed that CT is statistically
self-similar in an inertial range of wave number k, where
energy can be transferred from large scales to small scales at
a constant rate � without being dissipated by viscosity, a
process called cascade �9�. Using simple dimensional analy-
sis, Kolmogorov obtained a scaling law for the energy spec-
trum E�k���2/3k−5/3, which imposes a general criterion for
characterizing three-dimensional �3D� CT. Here the energy
spectrum E�k� is defined as E=�dkE�k�, where E is the total
incompressible kinetic energy and �=dE /dt. Kraichnan �17�
and Batchelor �18� �hereafter referred to as KB� extended
Kolmogorov’s theory to 2D turbulence by considering en-
strophy �half of the integral of squared vorticity� as a second
inviscid invariant. According to KB theory, the dual cascades
of energy and enstrophy give rise to two distinct scaling
regimes for 2D turbulence in the inviscid limit. For forced
2D turbulence, specifically, where energy and enstrophy are
injected into the flow at a given wave number kf, enstrophy
tends to cascade from kf toward higher k, leading the energy
spectrum to fall off like k−3 in this regime. On the other hand,
energy tends to cascade upward, i.e., from kf toward lower k,
with the kinetic-energy spectrum scaling like k−5/3, which is
also known as the inverse cascade. As for the decaying 2D
turbulence, KB theory also predicts a k−3 spectrum in the
inertial range. More detailed review of the theory and phe-
nomenology of 2D CT can be found in Ref. �19� and all
references therein.

Although the picture of enstrophy cascade proposed by
KB theory is also supported by other approaches, such as the
closure theory and closure calculations, however, direct nu-
merical simulations do not very strongly support the k−3 law
�19�. In fact, depending on the numerical schemes employed,
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the power law of the energy spectrum in the enstrophy cas-
cade regime appears in divergent disagreements with k−3 law
�19�, leaving 2D CT open to question. For all that, it is still
significant to ask whether there exists any analog between
2D CT and QT just as the Kolmogorov’s −5 /3 power law
being common in the 3D cases for CT and QT. In this work,
we study the turbulent dynamics of the 2D BEC confined in
a harmonic trap V���= �1 /2�m�2�x2+�y

2y2� by numerically
solving the time-dependent GP equation. We shall carry out
the computations in the oscillator units for mathematical
convenience, in which the length, time, and energy are, re-
spectively, scaled in units of �� /m��1/2, �−1 and ��, and the
time-dependent GP equation takes the following dimension-
less form:

i
����,t�

�t
= �−

�2

2
+

x2 + �y
2y2

2
+ g����,t��2	���,t� . �1�

Here, �= �x ,y� and the condensate wave function ��� , t� is
normalized by ����� , t��2d�=1. Correspondingly, the cou-
pling strength is expressed by g=4�ãN, where N is the total
number of atoms in the condensate and ã is the effective
s-wave scattering length in 2D space.

The organization of this paper is as follows. In Sec. II, the
time evolution of the wave function ��� , t� is solved by
numerically integrating Eq. �1�. Hydrodynamic properties
that are relevant in examining the occurrence of turbulent
flow in superfluid BEC, such as the kinetic energy, enstrophy
are determined from the condensate wave function. In Sec.
III, we discuss the scaling laws for the incompressible
kinetic-energy spectrum. In particular, a scenario for dual
cascade in 2D trapped BEC is presented. Finally, some con-
cluding remarks are given in Sec. IV.

II. NUMERICAL INTEGRATIONS
OF THE GROSS-PITAEVSKII EQUATION

To numerically integrate Eq. �1�, we use the method of
lines with spatial discretization by highly accurate Fourier
pseudospectral method and time integration by adaptive
Runge-Kutta method of orders 2 and 3 �RK23�. Furthermore,
to stir the condensate to turbulence, we assume that a vortex
quadrupole consisting of two singly quantized vortices lo-
cated at �	4,0� and two singly quantized antivortices lo-
cated at �0, 	4� is initially placed in an isotropic condensate
��y =1� with a Thomas-Fermi �TF� radius RTF=
2
=6,
where 
 is the chemical potential of the condensate. Such a
configuration can be constructed following the method de-
scribed in Ref. �20�. The time evolution of the above vortex
configuration is shown in Fig. 1 by plotting ���� , t��2 at vari-
ous times. In Figs. 1�b�–1�d�, we see that the vortices first
pair up as two vortex dipoles under the influence of trap
potential �Fig. 1�b�� and start to traverse in the condensate.
Since vortex is a phase singularity and can rotate the mass
surrounding it, the traveling vortices that pass through the
outer dilute area of the trapped BEC can generate surface
waves. Consequently, the interplay between surface waves
creates mass blobs of opposite phases in the outer dilute area,
which may collide with each other and nucleate vortices via

snake instability. Now as time goes on, the two vortex di-
poles move toward each other along the line y=x under mu-
tual interaction and eventually come to a head-on collision,
which annihilates all initial vortices and forms a radially ex-
panding ringlike dark soliton preceded by a shock wave.
Owing to the trapping potential, the outgoing shock wave is
reflected at the border area and subsequently pulsates in the
condensate for a while. This back-and-forth pulsation gives
rise to more violent surface waves which would also gener-
ate vortices as described above. Apart from the above mecha-
nism, the shock wave itself could also generate vortices
when traveling in the outer dilute area. Such a mechanism is
discussed by Hau in Ref. �21�, where the shock wave causes
stripes of dark or gray soliton �vortex sheet�, which evolves
later into vortices via snake instability.

The pulsation of the shock wave fades until most of its
energy disperses and causes significant density fluctuations
inside the condensate. After this stage, the sound waves �den-
sity fluctuations� fully develop in the interior of the conden-
sate, whereas all newly generated quantized vortices are
driven to the outer region of the condensate. Finally, after a
sufficiently long period, say t=100, the density profile of the
condensate is plotted in Fig. 1�f�, where the cumuluslike pat-
tern of the spatial distribution suggests that the superflow
might have become turbulent there.

In applying the spectral scaling approach to identify the
occurrence of turbulence in the trapped BEC, it is more ap-
propriate to express the condensate wave function in the
form of Madelung transformation, namely, ��� , t�
=
n�� , t�exp�i��� , t��. Substituting the above form into Eq.
�1�, we obtain the continuity equation and Euler equation,
respectively,

�

�t
n + � · �nu� = 0, �2�

FIG. 1. �Color online� Density profile of the trapped BEC at
various times: �a� t=0, two singly quantized vortices and two singly
quantized antivortices are located at �	4,0� and �0, 	4�, respec-
tively, in a condensate with RTF=6 and �=1; �b� t=3.5; �c� t=5.4,
annihilation of the four energetic vortices in the central region; �d�
t=5.8, an outwardly propagating shock wave is formed; �e� t=9.5;
and �f� t=100, achieving the stationary turbulent state.
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�

�t
u + u · �u = − �Q , �3�

where u�� , t�=���� , t� is the velocity field of the superflow
and Q=gn+V− ��2
n� /2
n. The total-energy functional is
calculated in terms of n and u, that can be expressed as the
sum of four terms

Etot =� �1

2
��
ne−i��2 +

x2 + �y
2y2

2
n +

1

2
gn2	d�

= Ekin + Eq + Etr + Eint, �4�

where

Ekin =
1

2
� �
nu�2d� ,

Eq =
1

2
� ��
n�2d� ,

Etr =
1

2
� n�x2 + �y

2y2�d� ,

Eint =
1

2
� gn2d� ,

represent the superfluid kinetic energy, the quantum pressure
energy, the trap energy, and the interaction energy, respec-
tively. Following Ref. �7�, we decompose the vector field

nu into the solenoidal and irrotational parts or, correspond-
ingly, the incompressible and compressible parts, i.e., 
nu
= �
nu�i+ �
nu�c, where � · �
nu�i=0 and �� �
nu�c=0. To
accomplish such decomposition, we may let �
nu�i=��A
and �
nu�c=�
, where A and 
 are the vector and scalar
potentials for the field 
nu, such that 
nu=��A+�
. Tak-
ing divergence on both sides of the last expression, we get
the Poisson equation for the scalar potential

�2
 = � · �
nu� , �5�

which can be numerically solved by Fourier pseudospectral
method. Once the scalar potential 
 is numerically solved,
the vector potential A can be determined and, hence, the field
components �
nu�i and �
nu�c. Thus, the incompressible and
compressible kinetic energies are defined by Ekin

i,c

= �1 /2��d���
nu�i,c�2. Moreover, since �
nu�i and �
nu�c are
mutually orthogonal, it follows that Ekin=Ekin

i +Ekin
c . Physi-

cally, Ekin
i and Ekin

c correspond to the kinetic energies of
swirls and sound waves in the superflow, respectively. Apart
from the kinetic energy, we also need to calculate the enstro-
phy of the superflow for comparison with the results of 2D
CT. Classically, the enstrophy Z is defined by Z
= �1 /2�����2d�, where � is the vorticity vector. In this paper,
in analogy with the replacement u→
nu, for nonuniform
condensate density, we use the modified vorticity vector,

� = � � �
nu� = �
n � u + �
j

2�sj

n��� − � j�ẑ , �6�

instead of the usual form �=��u to evaluate the density of
enstrophy in a trapped BEC. Here 2�sj�sj = 	1� is the cir-
culation quantum carried by the jth vortex and the delta
functions entering in the right-hand side indicate the loca-
tions of singularity of the enstrophy distribution. It should be
clarified that, although Eq. �6� introduces anomalous genera-
tion of vorticity due to the gradient of density in addition to
the usual contribution made by quantized vortices, the first
term in the right-hand side of Eq. �6� only contribute slightly
to the total vorticity as we shall see in the following demon-
strations in Fig. 4. As a matter of fact, the definition of vor-
ticity is not crucial for the current study since � is not in-
volved in the calculations of kinetic-energy spectrum.

The profiles of ��
nu�i,c�2 /2 and ���2 /2, at t=0 and 100
are shown separately in Figs. 2–4. Initially, Ekin

i and Z are
compactly localized around the core of each individual quan-
tized vortex whose singular nature is revealed by the granu-
lar distribution of Z. The snapshot of the spatial distributions
for Ekin

i,c and Z at a much later instant of time t=100 are
shown in Figs. 2�b�, 3�b�, and 4�b� for comparison. We see
that the incompressible field is almost distributed in the outer
annular area of the condensate with 6� ����8, whereas the
compressible field is largely distributed in the inner region
with ����6. Thus, the incompressible and compressible
components of the kinetic energy are basically spatially sepa-
rated despite that they somewhat overlap around the border
area about ���
6. This result is consistent with the scenario
of vortex-sound separation in our previous study for the for-

FIG. 2. �Color online� Spatial distribution of the incompressible
kinetic energy Ekin

i at �a� t=0; �b� t=100. The circle of white dashed
line indicates the Thomas-Fermi radius of the condensate �RTF=6�.

FIG. 3. �Color online� Spatial distribution of the compressible
kinetic energy Ekin

c at �a� t=0; �b� t=100. The circle of white dashed
line indicates the Thomas-Fermi radius of the condensate �RTF=6�.
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mation of QT in a 3D BEC �15�, and Fig. 4�b� indicates very
clearly that all vortices are randomly localized in the outer
region.

The time evolutions of kinetic energies and enstrophy in
the time interval 0� t�100 are illustrated in Fig. 5. By vir-
tue of the initial vortex configuration, Ek

c comes up at a much
smaller value than Ek

i initially. However, the subsequent mo-
tion of the vortices causes Ek

c and Z to increase but Ek
i to

decrease shortly after the evolution sets out. In particular, the
movement of the vortices toward the high-density central
region leads to a rapid rise in the enstrophy as shown in Fig.
5�b�. Nevertheless, both Ekin

i and Z have an abrupt drop in
the period 5.5� t�6.0, when the four initial vortices are
driven to annihilate each other at the central region, which is
consistent with our previous observation.

From Fig. 5, we see that Ekin
i and Ekin

c stay almost station-
ary when the system reaches fully turbulent, yet the fluctua-
tions about their mean values reveal the occurrence of inten-
sive energy interchange between all components of the total
energy. To gain more insight into this observation, here we
derive an equation which relates the change rate of Ekin

i to
that of Ekin

c . In doing so, we first note that Eqs. �2� and �3�

can be combined to yield the continuity equation for the
current J=nu, i.e.,

�J

�t
+ � · �Ju� = − n � Q . �7�

Adding up the inner product of u and Eq. �7�, together with
that of J and Eq. �3�, we obtain

1

2

�

�t
�n�u�2� = −

1

2
� · �J�u�2� − J · �Q . �8�

Consequently, the change rate of the total kinetic energy can
be obtained by taking volume integral over the whole space
in both sides of the last equation and this leads to the follow-
ing identity:

d

dt
�Ekin

i + Ekin
c � = −� J · �Qd� , �9�

where the integral of the first term in the right-hand side of
Eq. �8� vanishes as a consequence of Stokes theorem. Equa-
tion �9� then accounts for the balance of energy, in the sense
that the change in the total kinetic energy is compensated by
the work done by the field −�Q on the trapped condensate
particles. Accordingly, the power in the right-hand side of
Eq. �9� represents the sum of conversions of Eint, Etr, and Eq,
into the total kinetic energy. Note that it is not possible to
figure out exactly the fractions of power converting, respec-
tively, into Ekin

i and Ekin
c from further derivations of Eq. �9�.

However, from Fig. 5, we see that Ekin
i and Ekin

c do constantly
fluctuate around their mean values, suggesting that energy
interchange between incompressible and compressible fields
mediated by the field −�Q occurs from time to time in the
condensate. Now, since we consider the scaling behavior of
the spectrum of Ekin

i as the sole criterion for identifying the
formation of QT, it is expected that Ekin

c , which is inseparable
from Ekin

i , may play a significant role in the dynamics of QT
in the trapped BEC, and this will be addressed in the follow-
ing section.

III. SCALING LAWS OF THE INCOMPRESSIBLE
KINETIC-ENERGY SPECTRUM

The angle-averaged kinetic-energy spectrum Ekin
i,c �k�, as a

function of wave number k, is defined by �7�

Ekin
i,c �k� =

k

2
� d��F��
nu�i,c��2, �10�

such that Ekin
i,c =�0

�Ekin
i,c �k�dk. Here F� . . . � denotes the Fourier

transform of a given function or vector field in 2D space. In
Eq. �10�, the integral over the k shell in the momentum space
is accomplished by numerically summing over the grid
points with �kx

2+ky
2�1/2=k, where kx and ky are the Cartesian

components of the wave vector k. In analogy with Eq. �10�,
the angle-averaged enstrophy spectrum is defined by Z�k�
= �k /2��d��F����2 such that the total enstrophy is given by
the integral Z=�0

�Z�k�dk. From Eq. �6�, it follows that Z�k�
=k2Ekin

i �k�, which is well known in the classical fluid dynam-
ics.

FIG. 4. �Color online� Spatial distribution of the enstrophy Z at
�a� t=0; �b� t=100. The circle of red dashed line indicates the
Thomas-Fermi radius of the condensate �RTF=6�. Comparing the
present figures with Fig. 2, we see that the distribution of Z basi-
cally coincides with that of Ekin

i . Obviously, every brightest speck
indicates the core of a quantized vortex. On the other hand, in the
interior region of the condensate that is free from vortices, the dis-
tribution of vorticity is scarcely detectable, indicating that the con-
tribution of the term �
n�u to the total enstrophy can be
neglected.
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FIG. 5. �Color online� Time developments of the
incompressible/compressible kinetic energy �upper� and the enstro-
phy �lower�.
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With Eq. �10�, we are now able to compute the spectra in
question. In doing so, we have observed that although the
velocity field of the superflow may change all the time, the
energy spectrum Ekin

i �k� evolves into a stationary form as
time gets large. To be specific, let us consider the incom-
pressible energy spectrum of the flow at t=100. Accordingly,
we find that there are two ranges of spectral scaling, in which
Ekin

i �k� takes a power law as shown in Fig. 6. In the first
range 2�k�4, Ekin

i �k��k−5/3, which is consistent with the
Kolmogorov spectrum and, in the second range k�10,
Ekin

i �k� follows closely with the k−4 law. Between these two
ranges, there is a transitional zone 4�k�10, where Ekin

i �k�
exhibits no scaling behavior. To double check the validity of
the scaling laws, we calculate Z�k� directly by numerical
integration according to the definition for the angle-averaged
spectrum. As expected, Z�k� indeed exhibits the power-law
behavior of k−1/3 and k−2 correspondingly. Furthermore, to
verify whether the spectral scaling behavior for Ekin

i �k� de-
pends on the geometry of the trapped BEC, we proceed to
calculate Ekin

i �k� for BEC with various values of RTF and �y.
Remarkably, all our numerical results indicate that when the
quantum turbulent flow is well developed, only the k−5/3 and
k−4 ranges persist in Ekin

i �k�, whereas the k−3 spectrum as
predicted by KB theory fails to develop in our system.

The emergence of k−5/3 law in our numerical calculations
for Ekin

i �k� is well expected, as we have seen in various ear-
lier studies concerning the turbulent motion of superflow in
the 3D atomic condensate. In this work, we are more inter-
ested in the k−4 spectrum with QT in trapped BEC. As a
matter of fact, the k−4 spectrum had been reported by some
numerical calculations in 2D CT and Saffman conjectured
that this scaling behavior is due to the dissipation of ran-
domly distributed discontinuities of vorticity in the classical
2D turbulent flow �22�. In comparison with those classical
cases, our results are consistent with Saffman’s theory for the
fact that there are indeed randomly distributed discontinuities
of vorticity in the quantum turbulent flow as demonstrated in
Fig. 4�b�. On the other hand, the derivation of k−4 spectrum
as a dissipation spectrum in Saffman’s theory is inconsistent
with our presumption on the nondissipative dynamics gov-

erned by Eq. �1�. Such a discrepancy might be explained in
terms of energy transfer between Ekin

i and Ekin
c as we shall see

in the following passages. Furthermore, we note that the
spectrum shown in Fig. 5 shares some similarities with those
of forcing 2D CT, although both dissipation and external
forcing are not taken into account in the present problem.
The coexistence of k−5/3 and k−4 spectra draws forth the fol-
lowing question: does a quantum analog for dual cascades in
2D CT exist in the 2D turbulent superflow of a trapped BEC?

A straightforward way for probing into the above question
is to evaluate the cascade rates of Ekin

i and the associated
energy flux through the wave number k by solving the scale-
by-scale energy budget equations derived from GP equation
�23�. However, as we have shown in Fig. 1, the temporal and
spatial variations in the modulus of the order parameter

n�� , t� can no longer be ignored in the turbulent regime
and, consequently, some extra terms mixing up the energy
contents of two different kinematic categories �incompress-
ible and compressible� would enter the desired equation.
This makes the scale-by-scale calculations for the cascade
rate and energy flux through wave number k for Ekin

i ex-
tremely complicated by using the method of Ref. �23�.
Therefore, to circumvent this difficulty, we shall give an em-
pirical interpretation of the cascading process in the current
problem based on the numerical results so far presented. In
doing so, let us survey some subtle ingredients of the model.
The first subtlety is the meaning of the “size” for an energy-
carrying eddy in a trapped BEC. From the definition of the
vorticity vector � �Eq. �6��, we note that the singular and
regular parts of � are modulated by 
n and its gradient,
respectively. As a result, the magnitude of vorticity ��� of a
vortex in high-density area is greater than that of a vortex in
low-density area and, with such reasoning, we say that an
eddy is energetically “larger” if it contains more circumfluent
particles. In Fig. 7, the streamlines or the level curves of
����=C for various values of the constant C are plotted for
the flow at t=0 and t=100, respectively, where ���� is the
stream function �24� associated with the velocity field and
the false colors indicate the corresponding values of ����. To
be conspicuous, part of Fig. 7�b� is enlarged and shown in
Fig. 8, so that the locations and structures of eddies can be
easily recognized by families of closed streamlines. Note that
the superflow acquires the largest velocity where the contour
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lines are closest together. Furthermore, by comparing the
sizes of regions occupied by a same color �i.e., the regions
characterized by the same ����=C�, we conclude that the
more energetic the eddy is, the larger spatial structure it pos-
sesses. Thus, considering the turbulent state represented by
Fig. 2�b�, the inhomogeneity of the system gives rise to a
gradational spatial distribution of eddies over the area en-
closing the active region of compressible field, with the larg-
est �also the most energetic� eddies located along the border
at ���
6 and the smaller �also the less energetic� ones lo-
cated more outwardly from the border.

Another subtlety yet to be addressed is the role of the
compressible field in the dynamics of QT. In 2D CT, nonlin-
ear interactions transfer energy primarily from the forcing
scales to larger scales where it is ultimately dissipated by
external friction while the enstrophy goes to small scales to
be removed by viscosity. Recall the scaling laws in the spec-
trum Ekin

i �k� and the corresponding subinertial ranges as
shown in Fig. 5. In comparing our results with the cases of
forcing 2D CT, we note that the transitional zone 4�k
�10 sandwiched in between the k−5/3 and k−4 ranges serves
as the energy input regime. This is very intriguing since there
are no external forcing terms in our theoretical setting. We
reason that the emergence of this energy input regime is due
to the activity of sound field, as it is evident that Ekin

c sur-
passes Ekin

i considerably �see Fig. 5� and, above all, cannot
be insulated from interchanging with the latter. Following the
arguments given at the end of Sec. II, we may conceive that
sound field acts as the energy source and sink simultaneously
for the vortices provided that the scaling behavior of Ekin

i �k�
is held as the top concern for the current problem. Now
considering that the sound waves generate vortices mostly in
the outer region of BEC, we may conclude that the energy is
transferred in the following two types. The first type is via
the enstrophy cascade manifested by the migration of vorti-
ces toward the low-density region. This is clearly demon-
strated in Fig. 4�b�, where the majority of vortices generated
by the input energy diffuse to the more and more dilute area
and so the incompressible kinetic energy is transferred into

smaller scales. Surely, this cascading is only effective within
a certain range, beyond which the density is too low to sus-
tain the formation of vortices and, hence, the energy is even-
tually “dissipated” by the dilution of density. Since the total
energy is conserved, the decrease in the incompressible ki-
netic energy is balanced by the replenishment of compress-
ible kinetic through the sound waves emitted by the vortices
when they are driven to move outwardly. This explains the
emergence of Saffman’s k−4 spectrum at large-k side despite
that no authentic dissipations are introduced �25�.

On the other hand, the k−5/3 spectrum at the small-k side
�2�k�4� demonstrates a distinct way to cascade energy. In
analogy to 2D CT, we may interpret this part of spectrum as
a consequence of inverse energy cascade from the forcing
scales 4�k�10 up to the larger scales with a cutoff at kc
=2. In 2D CT, the reciprocal of the smallest wave number
specifies the size for the largest vortices available, which is
normally dependent on the mechanism assumed for remov-
ing the energy. By the same token, we presume in our case
that kc

−1 indicates a length scale comparable to the sizes of
those few largest quantized vortices clumped around the rim
of the condensate, where the active regions of compressible
and incompressible fields overlap and the energy exchange
takes place persistently and expeditiously. Considering that
the overwhelming compressible field acts simultaneously as
the sink and source for the incompressible field, inverse cas-
cade occurs with energy being injected from the forcing,
conveyed among the few largest vortices, and eventually
dumped to the sound field all around. In fact, as the sound
waves keep pulling and dragging the ambient vortices, this
incoherent action prevents the accumulating of incompress-
ible kinetic energy at large scales, so the vortices are never
energetically large enough to re-enter the inner part of the
condensate.

IV. CONCLUDING REMARKS

In this paper, we have investigated a 2D QT in a harmoni-
cally trapped BEC. By solving Gross-Pitaevskii equation nu-
merically, we calculate the incompressible kinetic-energy
spectrum Ekin

i �k� for the fully turbulent superflow in the con-
densate. We conclude that the energy spectrum is character-
ized by dual cascades following the Kolmogorov-Saffman
scaling laws, with Ekin

i �k��k−5/3 at small-k regime and
Ekin

i �k��k−4 at large-k regime in the wave-number space.
Although our results of 2D QT in a trapped BEC possess

some similarities with those of 2D CT determined by Navier-
Stokes equations in classical fluid mechanics, there are some
fundamental differences yet to be pointed out. First, our sys-
tem described by Euler equation �after Madelung transforma-
tion� is compressible with the relationship of pressure and
density being polytropic; but the Navier-Stokes equations are
for incompressible flow with density being constant. Second,
viscosity in Navier-Stokes equation serves as an energy sink
and that means the classical fluid is a dissipative system. In
BEC, there is no viscosity and, therefore, the system is non-
dissipative. However, the trap potential and binary interac-
tion between particles serves as a medium for energy con-
versions such that the compressible and incompressible
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FIG. 8. �Color online� Detailed structure for part of the eddies in
Fig. 7�b� are shown by the enlarged streamlines plot.
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kinetic energies can be converted into each other through this
medium with compressible kinetic energy acting like sink
and source for incompressible kinetic energy comparable to
2D CT. Third, our Euler equation additionally has a disper-
sive quantum pressure term �though small�, which Navier-
Stokes equations do not have. Finally, for incompressible and
inviscid flow in classical fluid mechanics, a pair of point
vortices with same circulation but in opposite signs are im-
possible to annihilate each other due to Kelvin’s theorem.
However, it is possible in BEC when this kind of vortices
bump into each other. This is probably because the rotational
incompressible kinetic energy can be almost totally turned to
compressible but irrotational kinetic one.

We have verified in the present investigation that the scal-
ing behavior of the spectrum is independent of the trapping

geometry. To see whether the Kolmogorov-Saffman scaling
laws are universal for all cases of 2D QT with trapped BEC,
it is desirable to study the dynamics of turbulent superflows
for various condensate systems, such as the dipolar BEC,
two-component BEC, spinor BEC, and so forth. Results of
these studies will be reported elsewhere in the near future.
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