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Quantum crystals in a trapped Rydberg-dressed Bose-Einstein condensate
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Based on a mean-field approach, spontaneously crystalline ground states, called quantum crystals, of a trapped
Rydberg-dressed Bose-Einstein condensate are numerically investigated. In a quasi-two-dimensional geometry,
a hexagonal lattice of condensate droplets manifests when dressed coupling is above a critical value. The onset
of the crystallized state is characterized by a drastic drop of the nonclassical rotational inertia fraction (NCRIF).
Nevertheless, the NCRIF remains a large value for a large span of dressed coupling, which indicates that the
long-range phase coherence of a superfluid is preserved in the crystallized state. By relaxing the confinement
against the two-dimensional geometry and by introducing an anisotropic interaction, an AB stacking bilayer
lattice and a nearly square lattice, respectively, are also available in the system. A quasi-one-dimensional lattice
is also shown.
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I. INTRODUCTION

Superfluidity, which implies a long-range phase coherence,
is a crucial property at low temperatures of many quantum
liquids or gases such as liquid helium or Bose-Einstein con-
densates (BECs), whereas crystallization implies a long-range
configurational order. Superfluidity and crystallization are
generally two conflicting properties. Penrose and Onsager [1]
were the first to consider a BEC in a solid and concluded that
such a supersolid state simultaneously possessing crystalline
and superfluid properties was impossible. Since then, this
question has been revisited by a number of authors [2–4]
and has been a matter of much speculation for the past 40
years. Recently, the observation of a supersolid phase in 4He
systems [5] revitalized this fundamental interest.

An alternative and excellent candidate in which to study
supersolidity is atomic BECs, which provide a clean and
experimentally controllable system. The crystal structure in
solid helium can be replaced by the modulated density
in a BEC. Density modulated BECs are already formed
by the imposition of an external potential, creating the
so-called optical lattices. In these systems, by varying the
properties of the optical lattice, the condensate was shown
to exhibit a Mott insulator-superfluid phase transition [6–9].
More recently, it has been shown that supersolidity might
be present for Rydberg atoms in the dipole–van der Waals
(vdW) blockade regime [10–13]. Cinti et al. [11] considered a
dipole-dipole interaction softening at short distance, allowing
for a ground-state computation that happens to display the
properties of supersolidity. It proved that a quantum system
of interacting particles can exhibit both a crystalline structure
and a superfluidity property. Similar results were obtained by
Saccani et al. [12] by using a Heaviside-function interaction.
Based on a mean-field treatment, Henkel et al. [13] proposed
that a BEC of particles interacting through an isotropically
repulsive vdW interaction with a softened core might support
a density modulation. They found that the Fourier transform
of such an interaction has a partial attraction in momentum

space, which gives rise to a transition from a homogeneous
BEC to a supersolid phase because of the roton instability (see
also Refs. [14,15]).

Based on the mean-field Gross-Pitaevskii (GP) treatment,
this paper attempts to study the ground-state density distri-
bution of a trapped Rydberg-dressed BEC. By comparing to
other GP work that did not consider the effect of trapping
[13], we exactly solve the nonlocal GP equation with a
trap. In a quasi-two-dimensional (quasi-2D) geometry, it is
shown that periodic structures of a Rydberg-dressed BEC
can undergo a transition from concentric rings to a lattice
(or crystalline) if the long-range dressed interaction coupling
α is above a certain critical value. The lattices are formed
in terms of crystalline condensate droplets, called quantum
crystals, whose onset is characterized by a drastic drop of
the nonclassical rotational inertia fraction (NCRIF) proposed
by Leggett [4]. Nevertheless, the NCRIF, which stands for
the superfluid fraction, remains at large values for a large
span of α and supports that the crystalized state is indeed
a supersolid state. The quasi-2D crystalline structure is a
hexagonal lattice, which can turn into a nearly square lattice
if the interaction acquires an anisotropic component in the
presence of an external electric field (Stark effect). Moreover,
a multilayer crystal structure such as an AB stacking bilayer
is also possible when the frozen axis is relaxed or the particle
number is increased.

The paper is organized as follows. In Sec. II we outline the
mean-field treatment of the nonlocal GP equation for studying
ground states of the Rydberg-dressed Bose-condensed system.
A crystalized state of the condensate droplet is shown to exhibit
in a quasi-2D geometry that is accompanied by a drastic drop of
the NCRIF. Section III shows more crystal structures available
in the system, such as those obtained by relaxing the confine-
ment against the quasi-2D geometry of a bilayer structure and
by introducing an anisotropic interaction in a nearly square
lattice. The crystalline structure in the case of a quasi-1D
geometry is also presented. We summarize in Sec. IV.
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II. MEAN-FIELD TREATMENT

We start from a nonlocal mean-field Gross-Pitaevskii
equation

ih̄∂t�(r,t) =
[
−h̄2∇2

2M
+ Vext(r) + g|�(r,t)|2

+
∫

U
(
r − r′) |�(r′,t)|2dr′

]
�(r,t), (1)

where

U (r − r′) = C̃6

R6
c + |r − r′|6 (2)

is the isotropically repulsive, long-range vdW interaction
between Rydberg-dressed ground-state atoms [16,17]. Here C̃6

and Rc are the effective coupling constant and blockade radius,
respectively. The interaction (2) can be generated from the
strong vdW interaction C6/r6 (C6 = 9.7 × 1020 a.u.) between
highly excited Rydberg atoms via off-resonance dressing [18].
Consequently, the interaction between two far-distant ground-
state atoms is U (r − r′) � C̃6/r6, where C̃6 = ν2C6 and ν =
(�/2�)2, with � the Rabi frequency and � the laser detuning,
respectively. At shorter distances, ground-state atoms enter the
vdW blockade regime [19] to which the effective interaction
saturates. The local interaction due to s-wave scattering is
g = 4πh̄2a/M , with a the scattering length and M the atomic
mass. In the cylindrical coordinates (ρ,φ,z), the harmonic
trapping potential Vext(r) = (Mω2

⊥/2)(ρ2 + λ2z2), with ω⊥
the radius frequency and λ the aspect ratio. The condensate
wave function � is normalized under N = ∫ |�|2dr, with N

the number of ground-state atoms.
Choosing the blockade radius Rc and τ ≡ R2

cM/h̄ as the
length and time scales, Eq. (1) can be rewritten as

i∂tψ(r,t) =
[
−∇2

2
+ ω2(ρ2 + λ2z2)

2
+ γ |ψ(r,t)|2

+ α

∫ |ψ(r′,t)|2dr′

1 + |r − r′|6
]

ψ(r,t), (3)

where we have redefined the normalized wave function
ψ ≡ √

R3
c /N�, the strength of the radius potential ω ≡

ω⊥τ , and the interaction constants γ ≡ 4πNa/Rc and α ≡
MNC̃6/h̄

2R4
c . To obtain ground-state wave functions, we

computed the governing equation (3) with imaginary time
propagation until the convergence of the normalized wave
function with error less than 10−6. Moreover, we have used
the method of lines with spatial discretization by the Fourier
pseudospectral method. The time integration in Eq. (3) is
done by the adaptive Runge-Kutta method of order 2 and
3, which is more time efficient due to an adjustable time
step.

For the trapped Rydberg-dressed BEC, one can define
useful characteristic lengths a⊥ ≡ √

h̄/Mω⊥ and a‖ ≡ a⊥/λ,
corresponding to the radial and axial potentials, respectively.
The spectrum and the onset of instability are tunable by
varying the particle number or the confining potential. By
varying the two ratios Rc/a⊥ = √

ω and Rc/a‖ = √
λω, one

can effectively have quasi-1D (
√

ω 	 1 and
√

λω ≈ 1) or
quasi-2D (

√
ω ≈ 1 and

√
λω 	 1) limits.

FIG. 1. (Color online) Density modulations of the quasi-2D
Rydberg-dressed condensate with ω = 3, λ = 8, γ = 0, and α = 10
(a), 50 (b), 2000 (c), and 3000 (d). Case (c) corresponds to ringlike
structures, while case (d) corresponds to the hexagonal crystal
structure of BEC droplets. All axes are in units of Rc.

A. Ground-state density profiles

The case of a quasi-2D geometry with ω = 3 and λ =
8 is studied first. Figure 1 shows the condensate density
profile varying with the strength of the dimensionless dressed
interaction α. When α is small, the ground-state density profile
exhibits typical behaviors of a central peak [see Fig. 1(a)]. As α

increases, the central density is too high to be stable and thus
starts to modulate. Figure 1(b) shows a cratered condensate
due to the central instability. As α increases further, owing
to the roton instability occurring in the modulated density
(see later), the condensate wrinkles violently and forms a
ring structure [see Fig. 1(c)]. When α is increased above a
critical value ∼2300, the condensate eventually forms a droplet
lattice. Figure 1(d) shows the quasi-2D Rydberg-dressed BEC
forming a hexagonal droplet lattice with α = 3000.

It is of particular importance and interest to examine
whether the crystalline structure shown in Fig. 1(d) is ac-
tually experimentally accessible. The case of α = 3000 can
correspond to the following reasonable set of experimental
parameters. One can consider ground-state 87Rb atoms cou-
pled to excited Rydberg nS state 87Rb atoms with n = 60
via a Rabi frequency � = 2π × 2.2 MHz and a red laser
detuning |�| = 2π × 75 MHz. It will then admix a small
fraction ν = (�/2�)2 = 2.2 × 10−4 of Rydberg character
into the ground-state atoms with the blockade radius Rc =
(C6/2h̄|�|)1/6 = 3.13 μm [13]. In addition, the effective
lifetime of dressed atoms 1/γeff = 1/νγr ∼ 0.46 s is as
large as hundreds of milliseconds with the Rydberg state
decaying rate γr ∼ 10 ms−1 [16]. Moreover, total number of
ground-state atoms will be N ∼ 5 × 103, which corresponds
to Nr = νN ∼ 1.1 for the number of excited Rydberg atoms.
By counting the number of droplets as ∼ 30 in Fig. 1(d), an
average of 0.037 excited Rydberg atom per droplet is found.
This also justifies the validity of the GP treatment with the
two-body dressing interaction U (r − r′) [20].

The formation of the ringlike structures [Fig. 1(c)]
can be understood in the uniform limit Vext → 0. For a
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uniform superfluid BEC with a density of n0 = 1/V (where
V denotes the volume), the corresponding excitation spec-
trum calculated from the Bogoliubov–de Gennes equa-
tions is a function of wave number k = |k| (in units of
1/Rc): ε(k) = {k2/2[k2/2 + 2αn0Ũ (k)]}1/2, where Ũ (k) =
(2π2/3)(e−k/2/k)[e−k/2 − 2 sin(π/6 − √

3/4k)] is the Fourier
transformation of the scaled interaction 1/(1 + |r − r′|6) in
Eq. (3). The contact interaction γ = 0 is ignored in ε(k). In-
cluding γ will not affect roton instability when α is sufficiently
large, nor will it affect the phonon behavior when α is small, to
which the leading term of the expansion of Ũ (k) is a positive
constant. That is, nonzero γ modifies only the sound velocity.
The excitation spectrum ε(k) has asymptotically a phonon
and a free-particle character at small and large k, respectively.
However, with Ũ (k) having a negative minimum at some finite
momentum, ε(k) drops near that particular momentum and
eventually becomes imaginary when increasing the strength
α. This suggests that the assumed uniform superfluid state
is unstable toward the possible formation of nonuniform
(periodic) order. Although the above ε(k) is obtained for a
uniform case, it is locally applicable to the condensate trapped
in a slowly varying potential.

B. Nonclassical rotational inertia fraction

To characterize the transition from concentric rings to a
crystalline hexagonal lattice, we study the NCRIF, defined by
(I0 − I )/I0. Here I is the moment of inertia of the superfluid
system under study and I0 is its corresponding classical value
[5]. As proposed by Leggett [4], the NCRIF of the superfluid
system can be calculated in the limit of a small rotation. In the
rotating frame, the free energy of a rotating BEC with rotation
velocity ω0 about the z axis is

F (ω0) = F0 − ω0〈ψ,Lzψ〉 =
∫ [ |(∇ − iω0ez × r)ψ(r)|2

2

+ ω2(ρ2 + λ2z2)

2
|ψ(r)|2 − ω2

0ρ
2

2
|ψ(r)|2

+ α

2
|ψ(r)|2

∫ |ψ(r′)|2dr′

1 + |r − r′|6
]
dr, (4)

where Lz = −i(x∂y − y∂x) is the z-component angular mo-
mentum operator and F0 = F (ω0 = 0) is the free energy of
the system without rotation. When ω0 � 1, F (ω0) can be
expanded as F (ω0) = F0(ψg) − Iω2

0/2, with ψg , taken to be
real, the ground state of F0. Since the classical moment of
inertia is given by I0 = ∫

ψ2
gρ2dr, we obtain for ω0 � 1

NCRIF =
∫

[|(∇ − iω0ez × r)ψ̄ |2 − (∇ψg)2]dr

ω2
0

∫
ψ2

gρ2dr

=
∫

ψ2
g [∇S(r) − ez × r]2dr∫

ψ2
gρ2dr

, (5)

where ψ̄ = |ψ̄ | exp(iω0S) is the ground state of F (ω0). In
arriving at Eq. (5) we have assumed that |ψ̄ | � ψg for ω0 � 1.
Note that while ω0 disappears in the second line of Eq. (5),
S does depend on ω0. As a consequence, the NCRIF can
be obtained by computing Eq. (5) with the solved ψ̄ and
ψg . Figure 2(c) plots the calculated NCRIF as a function
of the strength α. Three different orders of small rotating

FIG. 2. (Color online) (a) and (b) Plots of S(r), the local phase,
divided by the rotation frequency ω0 for ω = 3, λ = 8, γ = 0, ω0 =
0.01, and α = 2000 (a) and 3000 (b). Phase modulation is much more
stronger in case (b) than in case (a). (c) Plot of the calculated NCRIF
[Eq. (5)], showing a drastic drop associated with the onset of the
crystallization at α ∼ 2300 and the convergent behavior as ω0 → 0.

frequencies, i.e., ω0 = 0.1,10−2, and 10−3, are taken and
compared. One can see clearly that the curves are convergent
when ω0 → 0, which is anticipated for sensible results. There
are two important factors revealed in the results of the NCRIF
shown in Fig. 2(c). One is that the onset of the crystallization of
BEC droplets is characterized by the drastic drop of the NCRIF,
occurring at α = αc ∼ 2300. (No similar drop appears for the
occurrence of a ringlike structure at smaller α.) The other one
is that while the NCRIF is reduced significantly when α > αc,
it remains a large value for a large span of α. For example,
SNCRIF � 0.5 for α � 6000. This indicates that the superfluid
(and hence the supersolid) is preserved within this regime.

To understand how the NCRIF drops drastically when a
crystalized structure forms, in Figs. 2(a) and 2(b) we calculate
and plot S(r), the local phase, divided by the rotation frequency
ω0. Figures 2(a) and 2(b) correspond to α = 2000 (before
crystallization) and 3000 (after crystallization), respectively,
with the same rotation frequency ω0 = 0.01. One can see that
S modulates much more significantly in Fig. 2(b), about two
order magnitude higher than in Fig. 2(a). This gives the key
why the NCRIF drops drastically when a crystalized structure
forms with α � αc. Nonzero local phase modulation results in
a nonzero local superfluid flow ∼ ψ2

gω0∇S. When rotational
symmetry is broken due to the formation of a crystalized
structure, the ground state of the system must possess a nonzero
superfluid flow to maintain the rigid-body rotation. This is the
key why the phase modulation does not vanish as ω0 → 0. This
in turn results in the reduction of the nonclassical rotational
inertia or the loss of the superfluid fraction. It is worth noting
that while S modulates significantly in Fig. 2(b), the magnitude
of phase modulation ω0S is still small within the order of 0.01
[see Fig. 2(b)]. This again means that long-range superfluid
phase coherence is preserved.

Superfluidity is usually strongly dependent on thermal and
quantum fluctuations. As we are considering the limit of T →
0, thermal fluctuation can be safely neglected. Moreover, as
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FIG. 3. (Color online) Comparison of (a) a monolayer and
(b) a bilayer lattice structure: (a) the isosurface (isovalue 0.03) of
the density with ω = 3, λ = 8, γ = 0, and α = 5000 and (b) the
isosurface (isovalue 0.015) of the density with ω = 3, λ = 5, γ = 0,
and α = 10000. The inset in (b) shows the bilayer being an AB stack.

detailed in Sec. II A, the parameter regime under consideration
is where the use of a two-body interaction is justified (i.e., there
is no need to consider the three- or more-body interaction); the
quantum fluctuation is typically small in this regime.

III. MORE SUPERSOLID STRUCTURES

A. Bilayers

By relaxing the originally frozen z-direction potential
and/or increasing the particle number, the density starts to
modulate in the z direction and eventually forms a multilayer
structure. Figures 3(a) and 3(b) compare the formations of a
monolayer and a bilayer lattice. The inset in Fig. 3(b) indicates
clearly that such a bilayer structure is an AB stack.

B. Anisotropy-induced square lattices

It is also interesting to note that when a Rydberg dressing
interaction becomes anisotropic, the hexagonal lattice can shift
to a nearly square lattice due to distortion of the interaction.
This can occur when an external static electric field E is applied
to the system (Stark effect) for which a two-photon mechanism
will acquire an anisotropic component for the interaction,
as compared to the purely isotropic case with E = 0 [21].
Figure 4 shows a nearly (though not perfectly) square lattice
by using an interaction of the Heaviside-function form ∼
θ (1 −

√
x2 + κ2y2 + z2) instead of ∼ 1/(r6 + 1) as in Eq. (3).

Here κ corresponds to the anisotropic ratio. The static electric
field is considered to be applied along the y axis. Without
losing generality, while the Heaviside-function interaction

FIG. 4. (Color online) Comparison of (a) a hexagonal and
(b) a nearly square lattice structure. The anisotropic ratio κ of the
interaction is (a) 1 and (b) 1.4 (see the text).

FIG. 5. (Color online) Density modulations of a quasi-1D con-
densate with ω = 15, λ = 0.2, and α = 10 (a), 250 (b), 500 (c), and
2000 (d). (e) shows the isosurface of modulation (d) with isovalue
0.05.

makes the simulation of anisotropy more convenient, it does
capture a roton minimum in the excitation spectrum.

C. Quasi-one-dimensional lattices

The condensate ground state in a quasi-1D system is also
investigated with ω = 15 and λ = 0.2. Figure 5 shows the
modulation of the condensate density of a quasi-1D system
by varying the strength of the dressing-induced interaction α.
When α is small, the system displays superfluidity and the
density has a central peak [see Fig. 5(a)]. As α increases, the
density starts to modulate and has multiple peaks. Figure 5(b)
shows that there are five peaks in the condensate in the
axial direction. With a sufficiently large α, the condensate
spontaneously crystallizes in the axial direction [see Fig. 5(c)].
As α increases further, the condensate starts to modulate in the
frozen direction, forming a crystalline structure with a central
hole [see Figs. 5(d) and 5(e)]. If α is extremely large, the
condensate starts to cluster in the originally frozen direction
and these clusters form a gyroidal chain.

IV. CONCLUSION

In summary, based on the Gross-Pitaevskii treatment, spon-
taneously crystalline ground states, called quantum crystals,
are numerically studied for a trapped Rydberg-dressed Bose-
Einstein condensate. In a quasi-2D system, a hexagonal droplet
lattice characterized by a drastic drop of the nonclassical
rotational inertia is shown when the dressing interaction is
sufficiently large. By relaxing the originally frozen axis, an
AB stacking bilayer lattice is observed. We also show that
by applying a static electric field to make the interaction
anisotropic, a nearly square droplet lattice can be obtained.
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