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Abstract 

Automatic neuron firing is an important and interesting research subject in neuroelectrophysiology. Through the 
original Hodgkin-Huxley model, we investigate its codimension 1 bifurcations along maximum conductance of the 
sodium channel, maximum conductance of potassium channel, and extracellular potassium concentration. We find that 
increasing maximum conductance of sodium channel, or decreasing maximum conductance of potassium channel, or 
increasing extracellular potassium concentration will all cause spontaneous oscillation without any external stimulus 
current. The effect of increasing extracellular potassium concentration will cause repetitive neuron firing has been 
verified by experiments, but the effect that changing maximum channel conductance will cause automatic neuron firing 
is first analyzed in the current paper but not yet verified by experiments. We hope the experiment can be done in the 
future by using sodium channel activator and potassium channel blocker. 
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concentration 

Introduction 

The Hodgkin-Huxley model was first derived from the 
experiment with axon of the squid in 1952 [1]. The huge 
success of the Hodgkin-Huxley model drew broad attention and 
since then intensive researches have been conducted to study 
cell membrane action potential caused by the activity of all 
kinds of ionic channels in excitable cells such as neurons and 
cardiac cells. Among these researches, many are about the 
bifurcation study of parameters in models, and spontaneous 
oscillation is a major focus in this subject. The earliest 
bifurcation analysis was on external stimulus current I. When 
increasing I, the stable equilibrium point (resting potential state) 
will go through a subcritical Hopf bifurcation and become 
unstable. At the same time, the only attractor left is a stable 
limit cycle characterized by its spontaneous oscillation in time. 
Further increasing I, this stable limit cycle will go through a 
supercritical Hopf bifurcation and the oscillation disappears. 
Simultaneously, the previous unstable equilibrium point 
becomes stable again and the resting potential state once more 
dominates the whole dynamic [2-6].  

Some other bifurcation analyses are about temperature [3, 
7-9]. FitzHugh [7] studied the effect of temperature on action 
potential  of squid axon and modified the original 
Hodgkin-Huxley equations by a temperature factor. Guttman 
and Barnhill [8] followed FitzHugh’s work and found repetitive 
firing when increasing temperature by both experiment and 
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computation. They also found that the firing frequency 
increases as the temperature increases. Feudel el al. [9] studied 
global bifurcations of the chaotic attractor in a modified 
Hodgkin–Huxley model of thermally sensitive neurons with 
temperature being the bifurcation parameter, and found a 
period-doubling cascade to chaos. 

Bifurcation along with extracellular potassium 
concentration has also been intensively investigated. Aihara 
and Matsumoto [10] studied the bifurcation of slightly 
modified Hodgkin-Huxley equations along extracellular 
potassium concentration with and without constant external 
stimulus current, I = 0 and 2/20 cmAI µ−= . They found, 
when I=0, the dynamics is first dominated by a stable 
equilibrium point (resting potential state) initially. When 
increasing extracellular potassium concentration, the dominant 
attractor becomes a stable limit cycle through a subcritical 
Hopf bifurcation and spontaneous oscillation occurs. When the 
concentration is further increased, the dynamics will again be 
dominated by a stable equilibrium point through a supercritical 
Hopf bifurcation and automatic neuron firing disappears. 
However, for 2/20 cmAI µ−= , they found bi-stability along 
the bifurcation of extracellular potassium concentration. The 
dynamics are first dominated by a stable equilibrium point and 
then changes to be dominated by a stable equilibrium point and 
limit cycle as extracellular potassium concentration is increased. 
Further increasing extracellular potassium concentration, the 
system will turn to be dominated by two stable equilibrium 
points. If extracellular potassium concentration is increased 
more, these two stable equilibrium points will turn back to a 
single stable equilibrium point again. Hahn and Durand [11] 
studied a complicated 19-compartment hippocampal pyramidal 
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cell (HPC) model and a reduced two-component HPC model. 
They found a similar bi-stability featured by the co-existence of 
a stable equilibrium point and limit cycle, the co-existence of 
stable repetitive firing and fixed resting states in their phrase, 
when increasing extracellular potassium concentration. 
Bi-stability of a stable equilibrium point and limit cycle is of 
particular interest in forming and annihilation of repetitive 
neuron firing, which is related to the phenomenon of 
single-pulse triggering and annihilation [2]. 

Few investigations were done about bifurcation of 
permeability of ionic channels in terms of maximum 
conductance. Schmid et al. [12] studied the blocking effect on 
ionic channels by reducing the maximum conductance of 
sodium and potassium channels through a modified stochastic 
Hodgkin-Huxley model, and found spontaneous oscillation 
only occurs when the potassium channel is blocked. In the 
current paper, besides extracellular potassium concentration, 
we investigate the bifurcations along the maximum 
conductance of the sodium and potassium channel in the 
original Hodgkin-Huxley equations without external stimulus, 
which has never been fully investigated before based on the 
literatures we have reviewed. Our goal is to find how the 
permeability of ionic channel would affect the action potential 
dynamics of a neuron, and focus on spontaneous oscillation. 
The modulation of permeability of an ionic channel can be 
simulated by changing its maximum conductance, which can 
be verified in experiments by adding a channel activator to 
increase or a blocker to decrease this permeability. 

 

Mathematical Model and Numerical Method 

The popular Hodgkin-Huxley model was originally 
derived to describe the dynamics of cell membrane action 
potential of squid axon [1], and has become a basic template 
for all advanced neuron models thereafter. The equations are 

   stimLKNa
m

IIII
Cdt

dV
+++

−
= )(1 ,              (1) 

where V denotes the trans-membrane action potential; 

mC  the capacitance and 21 −= FcmCm µ  usually; NaI  the 
sodium ionic channel current; KI  the potassium ionic 
channel current; LI  the leakage current (it represents other 
kinds of ionic channel currents than sodium and potassium); 

stimI  the external stimulus.  
The sodium current is further expressed by Ohm’s law: 

)()( 3
NaNaNaNaNa EVhmgEVgI −=−= , 

where NaE  is the sodium reverse potential; Nag  the 
conductance of sodium channel; Nag  the maximum 
conductance of sodium channel; m the sodium activation 
gating variable; h the sodium inactivation gating variable. 
Usually mVENa 50=  and 2120 −⋅= cmmsgNa . Similarly, 
the potassium current can be expressed as 

)()( 4
KKKKK EVngEVgI −=−= , 

where KE  is the potassium reverse potential; Kg  the 

conductance of potassium channel; Kg  the maximum 
conductance of potassium channel; n the potassium activation 
gating variable. Usually mVEK 77−=  and 

236 −⋅= cmmsgK . The leakage current is likewise expressed 
as 

)( LLL EVgI −= , 

with 23.0 −⋅= cmmsgL  and mVEL 387.54−= . 
Gating variables m, h, and n denote the opening 

probability of channel gates of various kinds with the exponent 
of it showing the number of gates. They can be modeled by 
chemical reaction  

, 
where C is the opening state, and O is the closing state. 

Then, by law of mass action, 
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with }{ nhms ,,∈ . sα  and sβ  are reaction rate 
constants which control the transition between the opening and 
closing of the gate, and they are generally functions of  V . 
∞s  is the steady state solution, and sτ  is the associated time 

constant. The relation between sα , sβ , ∞s  and sτ  is 

,
ss

ss
βα

α
+

=∞  ,1

ss
s βα

τ
+

=  

∞s  and sτ , or sα  and sβ  equivalently, are determined 
by curve fitting of experimental data. Usually, 
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Normally, the dynamics of (1) and (2) is dominated by a 
stable equilibrium point representing the resting potential state. 
When the external impulsive stimulus stimI  is employed 
above a certain threshold, it will go through a large excursion 
before settling down to the stable equilibrium point, and forms 
an action potential.  

In the current paper, bifurcations along maximum sodium 
channel conductance Nag , maximum potassium channel 
conductance Kg , and extracellular potassium concentration 

[ ]oK +  without external stimulus current, 0=stimI , are 
investigated. Here, we express  

)(120 gNafacgNa = , )(36 gKfacgk = , 

and use gNafac and gKfac individually as the bifurcation 
parameters. As to the bifurcation study of [ ]oK + , [ ]oK +  
needs to be introduced in the reverse potential of potassium ion 
by Nernst equation:  
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Table I. Bifurcation points along gNafac 

Bifurcation 
point between V (mV) m h n gNafac 

I and II -64.013778 0.059419 0.561265 0.332892 1.771337 

II and III -62.077378 0.074246 0.491727 0.363255 2.603657 

III and IV -56.003212 0.142931 0.290431 0.459771 3.086311 

IV and V -53.587703 0.181318 0.226837 0.497324 3.081814 

V and VI -38.742787 0.533610 0.044175 0.692139 4.487895 

VI and VII -29.292892 0.747528 0.018045 0.776770 8.822605 

 

 

Figure 1. Bifurcation along gNafac projected into V vs. gNafac 
diagram. In equilibria, solid segment represents stable 
equilibrium points and dashed segment represents 
unstable ones. In upper and lower limits of limit cycle, 
solid segment represents stable limit cycles and dashed 
segment represents unstable ones 

 
 

[ ]ln( )
[ ]

o
K

i

KRTE
zF K

+

+= , 

where [ ]iK + =400mM, [ ]oK + =20mM are the intra- 

cellular and extracellular potassium concentrations under 
normal condition; R=8.315 J/(mol K) is the gas constant; 
T=310 K is the room temperature in degrees of Kelvin; z=1 is 
the valence of potassium ion; F=96485 Coulomb/mol is the 
Faraday’s constant. In the current study, we use XPPAUT [13] 
to do the numerical bifurcation analysis. 

 

Results and Discussion 

3.1 Bifurcation along maximum conductance of sodium 
channel 

The bifurcation along gNafac projected into V vs. gNafac 
diagram is shown in Figure 1. There are six bifurcation points, 
shown in Table I, along the equilibria, which separate the 
equilibria into seven regions marked from I to VII on the 
diagram. Attractors such as stable equilibrium point, stable 
limit cycle, and saddle point happening in each region are 
projected into V vs. m diagram and shown in Figure 2 
respectively. Most of region I has a stable equilibrium point 
only, which represents the resting potential state. As gNafac is 

 
(a)                              (b) 

 
(c)                              (d) 

 
(e)                              (f) 

 
(g) 

Figure 2. (a) Bi-stability featured by a co-existence of stable limit 
cycle and equilibrium point in region I with 
gNafac=1.77. (b) A stable limit cycle in region II with 
gNafac=2.3.(c) A stable limit cycle and a saddle point 
in region III with gNafac=2.9. (d) A stable equilibrium 
point and limit cycle in region IV with gNafac=3.086. 
(e) A stable limit cycle and a saddle point in region V 
with gNafac=3.5. (f) A stable limit cycle and a saddle 
point in region VI with gNafac=5. (g) Bi-stability 
featured by a co-existence of stable limit cycle and 
equilibrium point in region VII with gNafac=11 
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(a)                                     (b)                                    (c) 

 
(d)                                    (e) 

Figure 3. Spontaneous oscillation in region II-VI: (a) in region II with gNafac=2.3, (b) in region III with gNafac=2.9, (c) in region IV with 
gNafac=3.086, (d) in region V with gNafac=3.5, (e) in region VI with gNafac=5 

 

 
Figure 4. Single-pulse triggering and annihilation in a bi-stable 

state featuring a co-existence of stable limit cycle and 
equilibrium point. Here gNafac=1.6, first stimulus 
current 2/101 cmAS µ=  lasts for 1 ms, and the second 
stimulus current 2/102 cmAS µ=  lasts for 50 ms. The 
spontaneous oscillation (stable limit cycle) is triggered 
by S1 from the resting potential state (stable 
equilibrium point) and annihilated later by S2, and the 
action potential goes back to the resting potential state 
again 

 
increased towards region II, a saddle-node bifurcation of limit 
cycles occurs with the emergence of a pair of stable and 
unstable limit cycles [2], and creates a short interval of 
bi-stability featured by the coexistence of a stable equilibrium 
point and limit cycle as shown in Figure 2(a). It looks like the 
stable equilibrium point is located right on the stable limit 
cycle as it appears in Figure. 2(a). In fact, the stable 
equilibrium pint is very near but not on the stable limit cycle. 
Further increasing gNafac, region I bifurcates to region II, 
 

which is a subcritical Hopf bifurcation with the stable 
equilibrium point in region I becoming unstable in region II, 
the unstable limit cycle disappearing, and the stable limit cycle 
remaining. This stable limit cycle remains all the way down to 
region VI and part of region VII with the upper and lower 
limits of spontaneous oscillation almost unchanged as shown 
in Figure 1. Its frequency slightly increases as gNafac 
increases and this is shown in Figure 3. Further increasing 
gNafac from region II to III and etc. only changes the property 
of equilibrium point. It becomes a saddle point in region III; a 
stable equilibrium point in region IV; a saddle point in region 
V; a saddle point in region VI with location far different from 
that of region V. Increasing gNafac from region VI into region 
VII, another subcritical Hopf bifurcation occurs. Further 
increasing gNafac in region VII, another saddle-node 
bifurcation of limit cycles as in region I happens, and the 
dynamics is dominated by a single stable equilibrium point 
again. Bi-stabilities happen in region I, IV, and VII. All these 
bi-stabilities are a co-existence of stable limit cycle and 
equilibrium point and its associated phenomenon of 
single-pulse triggering and annihilation is shown in Figure 4. 

The physiological reason for forming spontaneous 
oscillation via increasing maximum conductance of sodium 
channel is due to the automatic de-polarization in phase 4 of 
action potential. In a normal situation, the balance of inward 
sodium, outward potassium, and leaking currents would have 
the action potential rest to its resting potential state in phase 4, 
and the action potential would not rise until next external 
stimulus is applied. Here, since the maximum conductance of 
sodium channel is increased, the inward sodium current is 
slightly larger than the outward potassium current in phase 4. 
This causes a total net inward current of small amount and 
increases the action potential gradually until it reaches the 
threshold and rises quickly to form another action potential. 
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Table II. Bifurcation points along gKfac 

Bifurcation 
point between V (mV) m h n gKfac 

I and II -62.226498 0.072999 0.497087 0.360899 0.549249 

II and III -59.076957 0.103551 0.386626 0.410991 0.381637 

III and IV -39.447748 0.515186 0.047570 0.684612 0.220006 

IV and V -29.726872 0.739503 0.018724 0.773498 0.106770 

 

 
Figure 5. Bifurcation along gKfac projected into V vs. gKfac 

diagram. In equilibria, solid segment represents stable 
equilibrium points and dashed segment represents 
unstable ones. In upper and lower limits of limit cycle, 
solid segment represents stable limit cycles and dashed 
segment represents unstable ones 

 

3.2 Bifurcation along maximum conductance of potassium 
channel 

The bifurcation along gKfac is similar to gNafac except 
that bifurcations all happen as gKfac decreases. The 
bifurcation along gKfac projected into V vs. gKfac diagram is 
shown in Figure 5. It has four bifurcation points, shown in 
Table II, that separate the equilibria into five regions marked 
from I to V along the equilibria. Like the case of gNafac, 
attractors such as stable equilibrium point, stable limit cycle, 
and saddle point happening in each region are projected into V 
vs. m diagram and shown in Figure 6 respectively. 
Saddle-node bifurcation of limit cycles happens in regions I 
and V, and subcritical Hopf bifurcation occurs between region 
I and II, IV and V respectively. The stable limit cycle spans 
from region I to V with the lower and upper limits of 
oscillation almost unchanged as shown in Figure 5. The 
frequency of oscillation slightly increases as gKfac decreases, 
and this is shown in Figure 7. The stable equilibrium point in 
region I evolves into an unstable one in region II; a saddle 
point in region III; another saddle point in region IV that has 
location far different from that of region III; finally a stable 
equilibrium point again in region V. Bi-stability occurs at 
region I and V featuring the co-existence of a stable limit cycle 
and equilibrium point. It again looks like the stable equilibrium 
point is located right on the stable limit cycle as it appears in 
Figure 6(a). In fact, the stable equilibrium point is very near 
but not right on the stable limit cycle. 

 

 
(a)                              (b) 

 
(c)                              (d) 

 
(e) 

Figure 6. (a) Bi-stability featured by a co-existence of stable limit 
cycle and equilibrium point in region I with gKfac=0.578. 
(b) A stable limit cycle in region II with gKfac=0.5.(c) A 
stable limit cycle and a saddle point in region III with 
gKfac=0.3. (d) A stable limit cycle and a saddle point in 
region IV with gKfac=0.2. (e) Bi-stability featured by a 
co-existence of stable limit cycle and equilibrium point 
in region V with gKfac=0.09 

 
The physiological reason for forming spontaneous 

oscillation via decreasing maximum conductance of potassium 
channel is due to the net inward current of a small amount in 
phase 4 of action potential the same as the mechanism 
described in session 3.1. Unlike increasing maximum 
conductance of sodium channel, this net inward current is due 
to the decreasing of outward potassium current through the 
decrease of its maximum conductance.  

3.3 Bifurcation along extracellular potassium concentration 
The bifurcation along [ ]oK + is much simpler compared 

with those of gNafac and gKfac. It happens as [ ]oK +  

increases, and the bifurcation projected into V vs. [ ]oK +  
diagram is shown in Figure 8. It has only two bifurcation 
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(a)                                      (b)                                     (c) 

Figure 7. Spontaneous oscillation in region II-IV: (a) in region II with gKfac=0.5, (b) in region III with gKfac=0.3, (c) in region IV with 
gKfac=0.2 

Table III. Bifurcation points along [ ]oK +  

Bifurcation 
point between V (mV) m h n [ ]oK + (mM) 

I and II -59.913220 0.094538 0.415147 0.397652 32.699929 

II and III -41.622034 0.457672 0.060083 0.660268 60.818364 

 

 

Figure 8. Bifurcation along [ ]oK +  projected into V vs. 

[ ]oK + diagram. In equilibria, solid segment 

represents stable equilibrium points and dashed 
segment represents unstable ones. In upper and lower 
limits of limit cycle, solid segment represents stable 
limit cycles and dashed segment represents unstable 
ones 

 
 
points, shown in Table III, that separate the equilibria into 
three regions marked from I to III on the diagram. As above, 
attractors such as stable equilibrium point, stable limit cycle, 
and saddle point happening in each region are projected into V 
vs. m diagram and shown in Figure 9 respectively. There is a 
saddle-node bifurcation of limit cycles occurring in region I, 
followed by a subcritical Hopf bifurcation separating region I 
and II., and a supercritical Hopf bifurcation separating region 
II and III. The stable equilibrium point in region I evolves into 
an unstable one in region II and back to a stable one in region 
III. The stable limit cycle, mostly residing at region II, has 
oscillation with amplitude decreasing as [ ]oK +  is increased 
as shown in Figure 8. The frequency of oscillation increases 
largely as [ ]oK +  is increased and this is shown in Figure 10. 
Bi-stability happens in region I featuring a co-existence of a 
stable limit cycle and equilibrium point. It again looks like 

 
(a)                              (b) 

 
(c) 

Figure 9. (a) Bi-stability featured by a co-existence of stable limit 
cycle and equilibrium point in region I with 
[ ]oK + =32.03 mM. (b) A stable limit cycle in region II 

with [ ]oK + =40 mM. (c) A stable equilibrium point in 

region III with [ ]oK + =65 mM 

 
the stable equilibrium point is located right on the stable limit 
cycle as it appears in Figure 9(a). In fact, the stable 
equilibrium pint is very near but not right on the stable limit 
cycle. 

The physiological reason of forming spontaneous 
oscillation via increasing extracellular potassium concentration 
is also due to the small amount of net inward current in phase 
4 of action potential as described above. This net inward 
current is also due to the decreasing of outward potassium 
current through the rising of potassium reverse potential 

KE by 

[ ]ln( )
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o
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(a)                                       (b)                                      (c) 

Figure 10. Spontaneous oscillation in region II: (a) [ ]oK + =40 mM, (b) [ ]oK + =50 mM, (c) [ ]oK + =60 mM 

 

Further increasing extracellular potassium concentration would 
cause a larger net inward current due to a larger cut in 
potassium current. This larger net inward current would raise 
the action potential faster in phase 4 to reach the threshold and 
form another action potential. This explains why the frequency 
of oscillation increases as the extracellular potassium 
concentration is increased as in Figure 10. Since KE  
generally serves as the lower bound of the action potential, the 
increasing of the minimum potential because of increasing the 
extracellular potassium concentration would make the rise of 
action potential less in magnitude due to smaller driving force 

NaEV − . This explains why the oscillation amplitude 
decreases as the extracellular potassium concentration is 
increased. 

Though the bifurcation along the extracellular sodium 
concentration is not investigated here, it is expected to have 
similar dynamics as that of increasing extracellular potassium 
concentration when the extracellular sodium concentration is 
increased. That means spontaneous oscillation is expected to 
happen as the extracellular sodium concentration is increased. 
We can reason this similarly through the increasing of sodium 
reverse potential NaE , which serves as the driving force of 
sodium current. As in session 3.1, it would increase the inward 
sodium current and make a total net inward current in phase 4 
of action potential, which would de-polarize the action 
potential automatically. 

 

Conclusion 

Our current study via the original Hodgkin-Huxley model 
shows spontaneous oscillation can be achieved through 
increasing sodium channel maximum conductance, or 
decreasing potassium channel maximum conductance, or 
increasing extracellular potassium concentration without any 
external stimulus current. This spontaneous oscillation is 
encountered through subcritical Hopf bifurcation of the resting 
potential state. It has been observed in experiments that 
increasing extracellular potassium concentration will indeed 
cause repetitive neuron firing [11]. We hope our new discovery 
of causing automatic neuron firing through increasing sodium 
channel maximum conductance or decreasing potassium 
channel maximum conductance can also be verified by 
experiments in the future. As we know, bifurcation analysis is 
based on the change of model parameters, and changing 

parameters means extrapolation of the original model which is 
semi-empirically derived from curve fitting of experimental 
data under normal situations. We never know if we have 
over-extrapolated the model in some circumstances so that the 
original model no longer holds, unless the bifurcation is 
verified by experiments. We suggest implementing the 
experiment by the following ways. Increasing sodium channel 
maximum conductance is equivalent to increase the 
permeability of sodium channel, which can be done by adding 
sodium channel activator, usually a neurotransmitter such as 
acetylcholine (ACh) that binds to acetylcholine receptor and 
opens a sodium channel. Neurotoxins such as veratridine, 
scorpion α  toxin, and batrachotoxin are also candidates for 
sodium channel activator [14,15]. Decreasing potassium 
channel maximum conductance is equivalent to decreasing the 
permeability of potassium channel, which can be implemented 
by adding potassium channel inactivator or blocker such as 
tetraethylammonium (TEA) [16]. 
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