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Abstract. In this paper, we consider the numerical solution to the Poisson equation VZu = f(z,y) in
the Cartesian domain Q = [—1,1] ® [—1,1], discretized with the Chebyshev pseudo-spectral method. The
boundary conditions are assumed to be Dirichlet on all sides along the domain. The main purpose of this
paper is to explore a special reflexivity property inherent in the second-order Chebyshev differentiation matrix
and propose a reflexive decomposition scheme for orthogonally decoupling the linear system, derived from the
discretization, into independent subsystems. A numerical example is presented to demonstrate the validity and
efficiency of the decomposition. In addition to yielding a more efficient algorithm, the proposed scheme also
introduces coarse-grain parallelism as a by-product.
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1 INTRODUCTION

Chebyshev pseudo-spectral methods have long been used to numerically solve partial differential equations
[Tref00, Peyr02, MaEs07]. Unlike finite diffence or finite element methods, which generally employ piece-wise
polynomials of low order to approximate the solution, this approach usually employs polynomials of much
higher-order with unequally spaced grids for non-periodic problems. The advantage of the Chebyshev pseudo-
spectral method lies in its ability to achieve much higher accuracy than the other two approaches, given the
same number of grid points of the discretized domain or the same dimension of the matrix of coefficients
resulting from the discretization. This accuracy advantage, however, does not come without paying prices
computationally. The main disadvantage of this approach is mainly due to the fact that the coefficient matrices
derived from pseudo-spectral methods are often dense or have a bandwidth very close to the dimension of the
matrix. Accordingly, the pseudo-spectral methods cannot really benefit from using banded solvers when direct
methods are used to solve the linear systems from the discretization.

In this paper, we resort to a matrix decomposition scheme to decouple the original problem into smaller and
independent subproblems by exploring potential special properties of the matrices derived from the Chebyshev
pseudo-spectral method. The partial differential equation to be considered is the Poisson equation VZu =
f(z,y) in the Cartesian domain Q = [—1,1]®[—1, 1] with homogeneous Dirichlet boundary condition. Without

loss of generality we assume u = 0 on the boundary, i.e.,
(1) Viu = f(z,y),(z,y) € Q, and v = 0 on IN.

The main focus of this paper is to first explore special properties possesd by the first-order and second-order
Chebyshev differentiation matrices. We then, based on the special property of the second-order differentiation
matrix, show that the coefficient matrix of the derived linear system exhibits a reflexivity property. This
observation enables us to employ reflexive decompositions to decouple the system into independent subsystems,

yielding much more efficient numerical computations. This approach can be applied to many other partial



differential equations as well, so long as the problem exhibits a reflexivity property, which normally come from

some form of reflexive symmetry.

2 CHEBYSHEV DIFFERENTIATION MATRICES AND THEIR
SPECIAL PROPERTIES

In this section, we exploit special properties possessed by Chebyshev differentiation matrices and demonstarte
how to take advantage of the special property to reduce unnessary numerical computations in solving the

Poisson equation. With the Chebyshev pseudo-spectral method, the k** derivative of a function w with respect

to x at collocation points z; = cos (%), j=0,1,..., N can be approximated as
N
o u .
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where the entries of the collocation derivative matrix Dy, of dimension N + 1, are [Tref00, Peyr02, MaEs07]
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where ¢; = . We shall refer Dy to as the k"*-order Chebyshev differentiation matrix
1 otherwise

in this paper. Note that the 1st-order Chebyshev differentiation matrix Dy has the property
[DN]l] :_[DN]N—l,N—]; Z,JZO,,N

This property has been observed in [Tref00]. No further exploration of this peoperty, however, has been

realized in the literature when the Chebyshev pesudospectral method is employed to solve partial differential

equations, to the best of our knowledge. The fact that [Dn]i; = —[Dn]n—i,n—; is equivalent to saying Dy is an
anti-centrosymmetric matrix, i.e., Dy = —Jy4+1DnJn41 where Jyy1 is a cross-identity matrix of dimension
N +1:
1
IN41 =
1

Accordingly, the 2nd-order differentiation matrix, say S, is a centrosymmetric matrix [Andr73a, Andr73b,
CaBu76, Weav85]

S =Dx = Jnvi1 Dy JIni1t = Int1SIn 1

since JIQV_H = Iny1 where Iny1 is the identity matrix of dimension N + 1. Clearly, D% is anti-centrosymmetric
for any odd k and is centrosymmetric for and any even k.
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When Equation (1) degenerates to a 1D problem, the discretized problem can be solved by the following

linear system
Si=f 8e RV XN 7 Fc RNV
) = b) ) =
where § is matrix obtained by stripping the first and last rows and columns of S, i.e.,
Si; = Si; =[DXijyi,i=1,2,...,N—1

due to Dirichlet boundry conditions. The vector @ represents the discretized solution to be found and f denotes
the discrete values of f(x) at inner grid points. Note that the stripped matrix S remains a centrosymmetric
matrix: S = JN,1§JN,1. Now, let us turn to the Poisson equation in two dimensions. Employing a tensor
product spectral grid with the same number of Chebyshev points in both directions, Equation (1) may be

discretized with lexicographic ordering to yield the following linear system

2) Lyi=f,Ly e RNV f 5 e g0’
where Ly is the discrete Laplacian operator and may be expressed as [Tref00]
3) Ly=In-1®5+8®In_1

where S is the same stripped 2nd-order Chebyshev differentiation matrix as in the 1D case and ® is the well-
known Kronecker product. In the following, we shall denote Ly by K, In—1 ® S by K; and S ® In_;1 by K>

so that Equation (2) becomes
(4) Ki=f K=K, +K>.

The change of symbols is solely for the sake of notational simplicity for later discussions.
Although the linear system can be solved directly using either an iterative solver or via LU decomposition
(or Gaussian eliminations) without difficulties, we shall propose a more efficient way of solving the linear system
by taking advantage of a special reflexivity property possessed by the matrix K, before solving the system.
To begin with, let R = Jy_1 ® In—1. For the sake of notational brevity, we shall drop the subscripts
associated with I and J in the rest of this section, by assuming all matrix multiplications are conformable.

Note that R is a reflection matrix. We show in the following that K has the following property:
K = RKR.

In other words, we want to show that K is a matrix reflexive with respect to R. First we observe that
I®S=J®II®S)(JI) since

(JDNI®S(JRI) =




Therefore, we have K1 = RK; R. Next, note that

(JDESRNJIRI)=(JRI)((JST) @) (JRI)
=(JD)((JeDESoN(JD)(JI)=(JD)*(S®I)(JI)?

(6) =(IeoDNESeNIol)=85x1

where we have used the fact that S = JS.J and the equality (AB)® I = (A® I)(B®I). Accordingly, we have
K> = RK>R. From (5) and (6), we obtain K = RKR.

3 REFLEXIVE DECOMPOSITIONS OF K

As seen in the previous section, the matrix K is reflexive with respect to R. The reflexivity property of
K enables us to orthogonally decompose K into smaller independent submatrices. The explicit form of the
decomposition, however, depends on whether the integer N — 1 is even or odd. In this paper, we shall consider

only the case when N — 1 is even. Let N — 1 = 2k and evenly partition R and K into 2 X 2 sub-blocks as
0 R
(7) R= 0 yRi=Jpy @ IN—1

and

K K
K= T K and Koy € RFVTDXE(N=D),
Ky K»x

With this partition, the reflexivity property K = RK R implies
(8) K11 =RiK»Ri,Ki2 =Ri1K»xRi,K» = RiKi12R and K»2» = R1 K11 Rs.
Now, let X be the following orthogonal matrix:

I —-R
Ry 1

(9)

1
X=—

V2
Using the relations in (8), it can easily be shown [ChSa89, Chen94] that the transformation XT K X decouples

K into two independent submatrices as follows.

I Ry
-R: I

K1 Ki»
Ky K»

I —-R
R I

Dy 0
0 Do

(10) XTKX = % =

where D1 = K11 + Ki12R: and Dy = Kas — K21 Ry

In the following, we give the explicit form of the decomposed submatrices D; and D3 in terms of S and
its partitioned submatrices. Recall that K = K; + K> where K1 = Iy_1 ® S and K> = S ® In_1. It is trivial
to see that

_ Ii®S 0
(11) K1:IN—1®S=l kO ~]



since N — 1 = 2k by our assumption. To obtain the partioned form of K5, we evenly partition S as

S _ A?Vll ?12 ’S,ij c kak.
Sa1 Sa
The matrix K> can then be expressed as
- Si®In.1 Sa®In-
(12) Ky=S&In | = ~11 N-1 ~12 N—1 .
S21®In-1 S2®In-1

From (11) and (12) and the partitioned form of K, we have

Kin=L®8481®@In-1,Ki2=2581®In_1,

Koy =8 ®In 1, and Koo = I; ® S+ Soo @ In 1.
Accordingly, we have

D=, ®S+81®In-1)+ (Si12®In_1)R: and

(13) R ~
Dy =TI, @S5S+ S22 ®@In_1) — (S21 ® INn—1)R1.

As seen from these two decomposed submatrices, the dimension of each of them is only one half of the orig-
inal matrix. With these two explicit decomposed matrices available, Equation (4) can be solved much more

efficiently via the following orthogonal transformation
Ki= f where K = X"KX, 0= X"4, and f = X" f

since this transformation yields the following two smaller and independent subsystems

where 4; and f, are simply the evenly partitioned subvectors of 4 and f , respectively.

4 A NUMERICAL EXAMPLE

To demonstrate the validity of this approach, we present a numerical example of the stripped matrices K
obtained from the Poisson equation over a square domain on [—1,1] X [—1, 1], subject to homogeneous Dirichlet

boundary conditions with N = 5. The matrix K, of dimension 16, is numerically computed to yield
K=LeS+5%I

where

—31.5331 12.6833  —3.6944 2.2111
7.3167 —10.0669 5.7889  —1.9056
—1.9056 5.7889 —10.0669 7.3167
22111 —3.6944 12.6833 —31.5331
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R, = ,R=

R Is —-R
! , and X = L ® !
Ry V2 | R I
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It has already been shown that K = RKR and the transformation X7 KX indeed yields the following decom-

posed matrix

XTKX:lDl 0 l

0 Do
where
[ 60.8551  12.6833 —3.6044  2.2111  8.9889 0 0 0]
7.3167 —39.3889  5.7889  —1.9056 0 8.9889 0 0
~1.9056  5.7889 —30.3889  7.3167 0 0 8.9889 0
. 22111 —3.6944  12.6833 —60.8551 0 0 0  8.9889
5.4111 0 0 0 —35.8111  12.6833 —3.6044  2.2111
0 54111 0 0 73167 —14.3449 57889  —1.9056
0 0 54111 0 —1.9056 57880 —14.3449  7.3167
0 0 0 54111 22111 —3.6944  12.6833 —35.8111
and
[ _47.3830  12.6833 —3.6944 22111  9.2223 0 0 0
7.3167 —25.9226  5.7889  —1.9056 0 9.2223 0 0
~1.9056  5.7880 —25.9226  7.3167 0 0 9.2223 0
D, 22111 —3.6944  12.6833 —47.3889 0 0 0 9.2223
16.3777 0 0 0 —65.2774  12.6833 —3.6044  2.2111
0 16.3777 0 0  7.3167 —438111 57889  —1.9056
0 0 16.3777 0 —19056 57880 —43.8111  7.3167
I 0 0 0 163777 22111 -3.6944  12.6833 —65.2774

5 CONCLUSIONS
In this paper, we have exploited a special reflexivity property possessed by the second-order Chebyshev dif-
ferentiation matrix and by the matrix of coefficients in the linear system arising from discretizing the Poisson
equation with Dirichlet boundary conditions using Chebyshev pesudo-spectral method. Taking advantage of
this special property, we have derived the decomposed submatrices of coefficients explicitly via orthogonal
reflexive decompositions. This decomposition enables the original linear system to be solved via the resulting
independent linear subsystems to yield parallel and efficient numerical computations. Two numerical examples
were presented to demonstrate the decomposition, one for a spectral grid with an odd number of Chebyshev
points and the other for an even one. The advantages of our proposed decomposition have also been addressed,
which clearly indicates the efficiency of this approach. To close our conclusions, it deserves mentioning that
the proposed scheme is applicable to 3D Poisson equation and to a great number of other partial differential

equations as well, so long as the physical problems display reflexive symmetry.
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